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We demonstrate that demographic noise can induce persistent spatial pattern formation and temporal oscil-
lations in the Levin-Segel predator-prey model for plankton-herbivore population dynamics. Although the
model exhibits a Turing instability in mean-field theory, demographic noise greatly enlarges the region of
parameter space where pattern formation occurs. To distinguish between patterns generated by fluctuations and
those present at the mean-field level in real ecosystems, we calculate the power spectrum in the noise-driven
case and predict the presence of fat tails not present in the mean-field case. These results may account for the
prevalence of large-scale ecological patterns, beyond that expected from traditional nonstochastic approaches.
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I. INTRODUCTION

Many years ago, Turing showed how diffusion, normally
thought of as a homogenizing influence, can give rise to
pattern-forming instabilities �1�. Only recently, however,
have field observations provided strong support for the pres-
ence of Turing patterns in ecosystems, where diffusional pro-
cesses abound, at least in principle. The slow moving tussock
moth population in California together with its faster moving
parasites �2� as well as several plant-resource systems �3�
have been identified as satisfying, qualitatively at least, the
key requirements for diffusion-driven pattern formation. Ob-
served patterns of plankton populations have also been pro-
posed to arise from Turing instabilities, at least over short
length scales �4–7�.

The common feature of these systems is positive feedback
coupled to slow diffusion �usually associated with a species
labeled an “activator” that activates both itself and another
species called the “inhibitor”� and negative feedback coupled
to faster diffusion associated with the inhibitor. This combi-
nation of diffusion and feedback promotes the formation of
patterns because local patches are promoted through positive
feedback but are only able to spread a limited distance before
the fast diffusion and associated negative feedback of the
inhibitor prevents further spread. It is hypothesized that this
mechanism is responsible for a great deal of ecosystem level
pattern formation �2,3�.

One particular class of ecological pattern forming sys-
tems, predator-prey �or organism-natural enemy� systems,
has been extensively analyzed theoretically �see, for ex-
ample, Refs. �4,5,8–10�� and is beginning to allow qualita-
tive comparison to field data along with more system specific
theory �2,11�. A difficulty in directly comparing the results of
this large body of theory to field observations is that, in many
cases, models only exhibit Turing instabilities if the predator
diffusivity is much larger than the prey diffusivity or the
parameters are fine tuned �4,8,9,11�. The qualitative argu-
ment made above for pattern formation does not depend on
very large differences in diffusivities nor on additional eco-
logical details, and indeed, there are ecological pattern-
forming systems which do not apparently display very large
separation of diffusivities �2,3�. So what is the origin of pat-
tern formation in such systems?

One approach to such questions of ordering is to include
levels of detail that in some sense force the response of the
system. For example, whereas simple mean-field predator-
prey models do not show population oscillations, they can be
made to do so by the inclusion of predator satiation effects
�12�. However, such levels of realism do not need to be
invoked because there is a simpler explanation: intrinsic or
demographic noise. This may seem counterintuitive because
adding noise to a system is usually thought of as reducing
ordering by adding entropy; and indeed, this is exactly what
is observed in several models, such as percolation models of
epidemics �13� and spin models of forest canopy gaps �14�.
Surprisingly, however, systematic treatments of individual-
level models �ILMs� of predator-prey dynamics show that
the population fluctuations become amplified �15� and lead
to time-dependent oscillations �quasicycles� that can be dis-
tinguished from deterministic limit cycle behavior �16�. Dis-
appointingly, to date, no spatial effects of demographic noise
have been identified despite several attempts �17,18�.

In this Rapid Communication, we demonstrate that noise-
induced pattern formation arises in a simple but biologically
relevant predator-prey model and show that if it is analyzed
as an ILM, patterns occur over a much larger range of eco-
logically relevant parameters than predicted by mean-field
theory �MFT� even in the thermodynamic limit. We accom-
plish this by calculating the phase diagram and power spec-
trum of the model analytically. We also predict that experi-
mental noise-driven patterns will have power spectra with fat
tails not present in patterns driven by instabilities present in
MFT. Finally, we show that quasicycles are also present, and
we provide an interpretation of the spatiotemporal dynamics
that result.

II. HEURISTIC ANALYSIS OF THE LEVIN-SEGEL
MODEL

Among the simplest models of ecological pattern forma-
tion was originally introduced to model plankton-herbivore
dynamics �4�. This model takes the form

�t� = ��2� + b� + e�2 − �p1 + p2��� ,
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�t� = ��2� + p2�� − d�2, �1�

where the plankton population density is given by �s, the
herbivore population density is given by �s, b is birthrate for
the plankton, p1 and p2 are predation, d is competition-driven
death of the predators, and e corresponds to a community
effect, that is, the prey facilitates its own birth rate. In the
original presentation of this model, this term was intended to
be a proxy for reduced predator efficiency at higher prey
concentrations �4�. It can also be interpreted as an Allee ef-
fect, wherein many species have enhanced reproduction at
higher concentrations �for a review, see �19��. From here on,
we set p1=0 and p2= p for transparency of analysis. This
does not change the qualitative results. The parameters e and
p ,d identify the prey as the activator and the predator as the
inhibitor in the mechanism for pattern formation above and
distinguish this model from the standard Lotka-Volterra
based individual level models recently analyzed and demon-
strated not to contain patterns in �17,18�.

The model contains a stable homogeneous coexistence
state when

p � e and p2 � de , �2�

with stationary fixed-point populations given by

�s =
bd

p2 − de
, �s =

bp

p2 − de
. �3�

It contains a Turing instability if �4�

�

�
� � 1

��p/d − �p/d − e/p�
�2

. �4�

When the model violates the stability conditions in Eq.
�2�, the plankton population diverges and a plankton regula-
tion term �i.e., −f�3� is required to make the model valid.
Such a term would only materially affect the outcomes of
this analysis near the instability, where it would decrease the
set of parameters for which pattern formation occurs. To ex-
amine the behavior of the model, we take the generic set of
O�1� kinetic parameters b=1 /2, e=1 /2, d=1 /2, and p=1.
With these parameters Eq. �4� shows that nongeneric diffu-
sivities, � /��27.8, are required for pattern formation. Simi-
lar results are obtained for other generic parameter sets.

Demographic noise may change this picture �20� by in-
hibiting the decay of transient patterns. Turing instabilities
occur when, for some specific set of wave vectors, small
perturbations no longer decay. However, we expect that even
when the parameters are tuned away from the Turing insta-
bility, perturbations with some wavelengths may decay more
slowly than others, leading to transient patterns. Demo-
graphic noise would maintain these patterns by generating
continual perturbations. This is reminiscent of extrinsic
noise-driven patterns reported in other contexts �21–23�.

To quantify this heuristic argument, we look at the Fourier
transformed dynamics of the fluctuations from the coexist-
ence fixed point with added white-noise � variance 1. These
dynamics are given by

− i�x = Ax + � . �5�

The matrix A is the Fourier transformed stability matrix and
x is the vector of deviations from equilibrium of predator and
prey populations, respectively,

A = �− �k2 − p�s p�s

− p�s − �k2 + e�s
� . �6�

Simple manipulations yield the average power spectrum

P�k,�� = �p2�s
2 + �e�s − �k2�2�

	�	pb�s + ��k4 − �2 − �sk
2e��1 −

p�

e�
�
2

+ �2��e − p��s − �� + ��k2��−2

. �7�

The numerator is proportional to the variance of the noise,
which is in this case one. Very approximately, Eq. �7� pre-
dicts that patterns �indicated by peaks in the power spectrum�
form whenever e�� p� and that without noise and away
from a classical Turing instability the power spectrum is
zero. The condition e�� p� is much less stringent than Eq.
�4� and can be satisfied for generic sets of parameters. How-
ever, to reliably demonstrate our hypotheses and extract ex-
perimental predictions, we next perform a systematic study
of demographic noise from an individual level model.

III. INDIVIDUAL LEVEL MODEL

We define the individual level version of the model by
considering a locally well mixed patch of volume V. We
consider the following reactions:

P→
b

PP, PP→
e/V

PPP ,

PH→
p/V

HH, HH→
d/V

H , �8�

where P denotes plankton and H denotes herbivores, with
the parameters as described above. Stochastic trajectories of
H and P, enumerated by m and n, respectively, are described
by the master equation

�tP�m,n� = b�− nP�m,n� + �n − 1�P�m,n − 1��

+
e

V
��n − 1��n − 2�P�m,n − 1� − n�n − 1�P�m,n��

+
p

V
�− mnP�m,n� + �m − 1��n + 1�

	P�m − 1,n + 1�� +
d

V
��m + 1�mP�m + 1,n�

− m�m − 1�P�m,n�� . �9�

To analyze the master equation, we map it to a path inte-
gral formulation of bosonic field theory and generalize to
space �24–28�. To add space we consider a lattice of patches
and random hopping for both species at different rates be-
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tween nearest neighbor patches. The resulting Lagrangian
density is given by

L = ẑ�tz + 
̂�t
 − �ẑ�2z − �
̂�2
 − �z��ẑ�2 − �
��
̂�2

+ b
�1 − e
̂� +
e

V

2�1 − e
̂� +

p

V
z
�1 − eẑ−
̂�

+
d

V
z2�1 − e−ẑ� , �10�

where ẑ and z are noise and number variables, respectively,
for herbivores, and similarly, 
̂ and 
 are noise and number
variables for plankton. To analyze this Lagrangian directly is
difficult due to exponential terms and diffusive noise. To
make progress, we derive a systematic expansion and MFT
in powers of �V �18,29�. We assume the forms

ẑ →
ẑ

�V
, 
̂ →


̂

�V
, �11�

z = V� + �V�, 
 = V� + �V� �12�

for the fields and drop terms with negative powers of �V.
This yields the following form of the Lagrangian:

L = �VL1 + L2 + O�1/�V� . �13�

Minimizing L1 in the infinite V limit yields the MFT in Eqs.
�1�. Since we have already analyzed it, we now turn to L2
and analyze the finite V behavior. We represent L2 in matrix
form as

L2 = yT�tx − yTAx −
1

2
yTBy . �14�

The matrix A is the stability matrix we used in the heuristic
analysis above �Eq. �6��. The matrix B is given by

B = �2p�s�s + ��sk
2 − p�s�s

− p�s�s 2p�s�s + �sk
2 � , �15�

where we have Fourier transformed the equations. We also
now note that L2 is in the form of a Lagrangian in the
Martin-Siggia-Rose �MSR� response function formalism for
Langevin equations �30,31�. Thus we can extract coupled
Langevin equations for the fluctuations from the Lagrangian
by applying the MSR formalism. The resulting Langevin
equations with the appropriate noise ��� and correlations are

�A + i��x � Dx = ���� ,


�i���� j�− ��� = Bij . �16�

Simple manipulations yield the average power spectrum

P�k,�� =
�D22�2B11 − 2D12Re�D22�B21 + �D12�2B22

�det�D��2
.

�17�

This expression results in a rational polynomial with com-
plicated coefficients that is sixth order in k in the numerator,
and eighth in the denominator. The denominator is the same

as the denominator for the heuristic power spectrum in Eq.
�7�. Alternatively, these results could have been obtained by
a standard 
 expansion �29� of Eq. �9�.

IV. DISCUSSION

Pattern formation occurs when there is a peak in P�k ,��
at nonzero k. This occurs if dP /dk2�0 at k=0 because for
large k, the power spectrum is a decreasing function. The
peak occurs at the point where the derivative changes sign.
Carrying out the derivative at k=0 yields

�

�
�

p3�5p2 + 7de�
e�4p4 + 5p2de + 3d2e2�

. �18�

Equations �4� and �18�, and the stability conditions define
the phase diagram of the model �Fig. 1�. For the purposes of
the phase diagram, we fix the parameters as above, leaving p
and � /� as control parameters. The phase diagram shows
that the beyond mean-field corrections expand the range of
ecologically interesting parameters in which pattern forma-
tion occurs greatly.

For larger values of k, since the denominator in Eq. �17�
goes as the eighth power and the numerator as the sixth
power of k, it is clear that

P � k−2. �19�

This provides an experimental prediction: in regions II
and III of the phase diagram, the power spectrum will have a
fat tail that decays as approximately k−2. In region I, the
power spectrum will be dominated by the spatially structured
mean-field populations and should fall off much more
quickly. This is analogous to the statistical test to distinguish
quasicycles from limit cycles in predator-prey populations
that recently showed population oscillations in wolverines to
be driven by finite-size fluctuations �15,16�.

An additional feature of the model is that oscillations and
spatial pattern formation are essentially decoupled. This

0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

60

70

80

p

ν/
µ

I

II

III

FIG. 1. �Color online� Phase diagram over stable parameter re-
gion in p. The region I phase is MFT level pattern formation, the
region II phase is noise-driven pattern formation and quasicycles,
and region III is a spatially homogeneous phase with quasicycles.
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means that the model predicts global population oscillations
and spatial pattern formation but not traveling waves. The
mathematical origin of this can be seen in Eq. �7�. The k2

term with a negative coefficient at �=0 is quickly over-
whelmed by the positive k2 dependence of the �2 term as the
frequency begins to grow. In the power spectrum �Fig. 2� this
can be seen as the deep valley between the peaks in k and �.
This interpretation is supported by preliminary simulations
of an agent based model.

We also note that while nonspatial models have the prop-
erty that the thermodynamic limit of large system size is
equivalent to the mean-field limit �15�, in our spatial model,
the mean-field limit �volume of a well mixed patch, V, goes
to infinity� and the thermodynamic limit �number of patches
goes to infinity� are independent. V is determined by the
kinetics of the system and is finite whenever diffusion is
significant. The finite V dynamics described in this article
can only be neglected when the typical number of organisms
in a well mixed patch of volume V is extremely large since
the finite V fluctuations are large. This is indicated by the
large peak height ��60� of the power spectrum of the fluc-
tuations �Fig. 2� and is independent of the thermodynamic
limit. In ecological terms, this means systems with large
populations and spatial extent are as likely to have demo-
graphic noise-driven spatiotemporal dynamics as smaller
systems.

The results we have given here were calculated within a
specific model, but we expect that they will be substantially
unchanged in any model with a slow diffusing activator spe-
cies and a faster diffusing inhibitor species.
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FIG. 2. �Color online� Power spectrum with p=1 and
� /�=15.
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